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Adsorption of reactive particles on a random catalytic chain: An exact solution

G. Oshanin1 and S. F. Burlatsky2
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~Received 19 September 2002; published 28 January 2003!

We study equilibrium properties of a catalytically activated annihilationA1A→0 reaction taking place on
a one-dimensional chain of lengthN (N→`) in which some segments~placed at random, with mean concen-
trationp) possess special, catalytic properties. Annihilation reaction takes place as soon as any twoA particles
land onto two vacant sites at the extremities of the catalytic segment, or when anyA particle lands onto a
vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by
anotherA particle. Noncatalytic segments are inert with respect to reaction and here two adsorbedA particles
harmlessly coexist. For both ‘‘annealed’’ and ‘‘quenched’’ disorder in placement of the catalytic segments, we
calculate exactly the disorder-averaged pressure per site. Explicit asymptotic formulas for the particle mean
density and the compressibility are also presented.

DOI: 10.1103/PhysRevE.67.016115 PACS number~s!: 82.65.1r, 64.60.Cn, 68.43.De
sig
in
ir

an
c
i

ub
o

le
y
o

tio
lta
ta

.
iffe
ic
ta
s

ha

t

t-
f

io
uc
he

e
ti

bu
ze
m

ed
er-
lly

hus
ern
po-
lica,
e is
the

he
ck

. Fi-
he

er

aly-
en
ity

on-
cal
’’

bles

by
he
ide
of

nd,
ms
. In
d or
d in
ay
on

ti-
-
st,
yti-
ifi-
I. INTRODUCTION

In many industrial and technological processes the de
of desired chemicals requires the binding of chemically
active molecules, which recombine only when some th
substance—the catalytic substrate—is present@1,2#. Within
the two past decades much effort has been put in underst
ing of the peculiarities of such catalytically activated rea
tions ~CARs!. On one hand, much progress was made
answering the question why and how specific catalytic s
strates promote reactions between chemically inactive m
ecules~see, e.g., Ref.@3#!. On the other hand, considerab
theoretical knowledge was gained from an extensive stud
a particular reaction—the CO oxidation in the presence
metal surfaces with catalytic properties@4# ~for a recent re-
view see, e.g., Ref.@5#!. While the first aspect@3# sheds light
on catalyzation mechanisms and may allow the calcula
of Kel—the rate at which two reactants react being simu
neously in the vicinity of each other and of a specific ca
lytic substrate, the results of Refs.@4# show that the mere
knowledge ofKel is not sufficient. As a matter of fact, Refs
@4# have substantiated the emergence of an essentially d
ent behavior as compared to the predictions of the class
formal-kinetics scheme and have shown that under cer
conditions such collective phenomena as phase transition
the formation of bifurcation patterns may take place@4#.
Prior to these works on catalytic systems, anomalous be
ior was amply demonstrated in other schemes@6–8#, involv-
ing reactions on contact between two particles at any poin
the reaction volume~i.e., the ‘‘completely’’ catalytic sys-
tems!. It was realized@6–8# that the departure from the tex
book, formal-kinetic predictions is due to many-particle e
fects, associated with fluctuations in the spatial distribut
of the reacting species. This suggests that similarly to s
‘‘completely’’ catalytic reaction schemes, the behavior of t
CARs may be influenced by many-particle effects.

Apart from the many-particle effects, behavior of th
CARs might be affected by the very structure of the cataly
substrate, which is often not well-defined geometrically,
must be viewed as being an assembly of mobile or locali
catalytic sites or islands, whose spatial distribution is co
1063-651X/2003/67~1!/016115~14!/$20.00 67 0161
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plex @1#. Metallic catalysts, for instance, are often disorder
compact aggregates, the building blocks of which are imp
fect crystallites with broken faces, kinks and steps. Usua
only the steps are active in promoting the reaction and t
the effective catalytic substrate is the geometrical patt
formed by these steps. Another example is furnished by
rous materials with convoluted surfaces, such as, e.g., si
alumina, or carbons. Here the effective catalytic substrat
also only a portion of the total surface area because of
selective participation of different surface sites in t
reaction—closed pores or pores with very small, bottlene
entrances are inaccessible to many reacting molecules
nally, for liquid-phase catalytically activated reactions t
catalyst can consist of active groups attached to polym
chains in solution.

Such complex morphologies render the theoretical an
sis difficult. As yet, only empirical approaches have be
used to account for the impact of the geometrical complex
on the behavior of the CARs, based mostly on heuristic c
cepts of effective reaction order or on phenomenologi
generalizations of the formal-kinetic ‘‘law of mass action
~see, e.g., Refs.@1# and@2# for more details!. In this way the
parameters entering the equations describing the observa
~say, the mean particle densities! are fixed by fits to experi-
mental data and can deviate from the values prescribed
the stoichiometric relations of the reactions involved. T
important outcome of such descriptions is that they prov
an evidence of the existing correlations in the morphology
the chemically reactive environment. On the other ha
their shortcoming is that they do not explain the mechanis
underlying the anomalous kinetic and stationary behavior
this regard, analytical studies of even somewhat idealize
simplified models, such as, for instance, the ones propose
Refs.@4#, are already highly desirable since such studies m
provide an understanding of the effects of different factors
the properties of the CARs.

In this paper we study the properties of catalytically ac
vated annihilationA1A→0 reaction in a simple, one
dimensional model with random distribution of the cataly
appropriate to the just mentioned situation with the catal
cally activated reactions on polymer chains. More spec
©2003 The American Physical Society15-1
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cally, we consider here theA1A→0 reaction on a one
dimensional regular lattice that is brought in contact with
reservoir ofA particles. Some portion of the intersite inte
vals ~thick black lines in Fig. 1! on the regular lattice pos
sesses special ‘‘catalytic’’ properties such that they induce
immediate reactionA1A→0, as soon as twoA particles
land onto two vacant sites at the extremities of the catal
segment, or anA particle lands onto a vacant site while th
site at the other extremity of the catalytic segment is alre
occupied by anotherA particle.

We present here an exact solution of this model in t
cases—a case when disorder in placement of the cata
segments can be viewed asannealed,and a more complex
situation with aquenchedrandom distribution of the cata
lytic segments, and show that despite the apparent over
plified nature of the model it exhibits an interesting no
trivial behavior. We note finally that kinetics ofA1A→0
reactions involving diffusiveA particles which react upon
encounters on randomly placed catalytic sites has been
cussed already in Refs.@9,10# and@11#, and a rather surpris
ing behavior has been found, especially in low-dimensio
systems. Additionally, steady-state properties ofA1A→0
reactions between immobileA particles with long-range re
action probabilities in systems with external particles inp
have been presented in Refs.@12# and@13# and revealed non
trivial ordering phenomena with anomalous input intens
dependence of the mean particle density, which agrees
early experimental findings@14#. For completely catalytic
one-dimensional~1D! systems, kinetics ofA1A→0 reac-
tions with immobileA particles undergoing cooperative d
sorption have been discussed in Refs.@15,16# and@17#. Exact
solutions forA1A→0 reactions in 1D completely catalyti
systems in whichA particles perform conventional diffusiv
or subdiffusive motion have been presented in Refs.@18# and
@19#, respectively.

This paper is structured as follows. In Sec. II we defi
the model and introduce basic notations. In Sec. III we fo
on the case ofannealeddisorder and derive exact close
form expressions for the pressure per site, as well as pre
explicit asymptotic expansions in powers of the activity f
the mean particle density and for the compressibility of
system. In Sec. IV we examine the case ofquencheddisor-
der. Here, we show that the thermodynamic limit result

FIG. 1. One-dimensional lattice of adsorption sites in cont
with a reservoir. Filled circles denote hard-coreA particles. Thick
black lines denote the segments with catalytic properties.~a! de-
notes a ‘‘forbidden’’ particle configuration, which corresponds
immediate reaction.~b! depicts the situation in which two neighbo
ing A particles may harmlessly coexist.
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the disorder-averaged pressure per site can be obtained
directly by noticing a similarity between the expressions d
fining the pressure in the model under study and
Lyapunov exponent of a product of random 232 matrices,
obtained by Derrida and Hilhorst@20#. We also derive an
explicit expression obeyed by the averaged logarithm of
partition function, which is valid for any chain’s lengthN,
and present its large-N expansion. We show, in particula
that the first correction to the thermodynamic limit result f
the disorder-averaged pressure per site is proportional to
first negative power ofN. Explicit asymptotic expansions fo
the mean particle density and for the compressibility are a
derived. Finally, in Sec. V we conclude with a brief summa
of results and discussion.

II. THE MODEL

Consider a one-dimensional regular lattice of unit spac
comprising N adsorption sites in contact with a reservo
~vapor phase! of identical, noninteracting hard-coreA par-
ticles ~see, Fig. 1!. The reservoir is steadily maintained at
constant pressure.

The A particles from the vapor phase can adsorb o
vacant adsorption sites and desorb back to the reservoir.
occupation of the ‘‘i ’’-th adsorption site is described by th
Boolean variableni , such that

ni5H 1, if the ‘‘ i’ ’ th site is occupied

0, otherwise.

Suppose next that some of the segments—intervals
tween neighboring adsorption sites possess ‘‘catalytic’’ pr
erties ~thick black lines in Fig. 1! in the sense that they
induce an immediate reactionA1A→0, as soon as twoA
particles land onto two vacant sites at the extremities of
catalytic segment, or anA particle lands onto a vacant site
one extremety of the catalytic segment while the site at
other extremity of this segment is already occupied by
other A particle. Two reactedA particles instantaneousl
leave the lattice~desorb back to the reservoir!. Any two A
particles adsorbed at extremities of a noncatalytic segm
harmlessly coexist.

To specify the positions of the catalytic segments, we
troduce the quenched variablez i , so thatz05zN50 and

z i5H 1, if the i -t interval is catalytic, i 51,2, . . . ,N21

0, otherwise.

Now, for a given distribution of the catalytic segmen
the partition functionZN(z) of the system under study can b
written as follows:

ZN~z!5(
$ni %

zSN )
i 51

N21

~12z inini 11!, ~1!

whereSN5( i 51
N ni and the summation($ni %

extends over all

possible configurations$ni%, while z denotes the activity,

z5exp~bm!, ~2!

t

5-2
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ADSORPTION OF REACTIVE PARTICLES ON A . . . PHYSICAL REVIEW E67, 016115 ~2003!
m being the chemical potential, which accounts for the r
ervoir pressure and for the particles’ preference for adso
tion. Note thatZN(z) in Eq. ~1! is a functional of the con-
figurationz5$z i%.

It might be instructive to remark thatZN(z) can be also
thought of as a one-dimensional version of models desc
ing adsorption of hard molecules@21–28#, i.e., adsorption
limited by the ‘‘kinetic’’ constraint that any two of the mol
ecules can neither occupy the same site nor appear on
neighboring sites. The most celebrated examples of s
models are furnished by the so-called ‘‘hard-squares’’ mo
@21–25#, or by the ‘‘hard-hexagons’’ model first solved ex
actly by Baxter@27#.

These models exhibit phase transitions. The unive
classification of phase transitions is known to depend on
dimensionality, the presence of further interactions, and
way in which the lattice can be partitioned into sublattic
For bipartite lattices and interactions dominated by near
neighbor exclusion, the ordering transition is the result
competition between the two sublattice densities. The ph
transition is thus associated with a breaking of the symm
between these two sublattices. For geometrically more c
plex Baxter’s hard-hexagon model, which consists of p
ticles with the nearest-neighbor exclusion on the triangu
lattice, the phase transition belongs to the three-state P
model universality class, in accordance with the fact that
phase transition is associated with symmetry breaking
volving three competing equivalent sublattice densities.
more discussion see, e.g., Refs.@27,28# and @29#.

In our case of the CARs on random catalytic substra
the nearest-neighbor exclusion constraint is introduced o
locally, at some specified, randomly distributed interva
Such locally frustrated models of random reaction/adsorp
thus represent a natural and meaningful generalization o
well-studied exclusion models over systems with disord
Of course, in this context two-dimensional situations are
most interest, but nonetheless it might be instructive to fi
examples of such models that can be solved exactly in
dimension.

Our main goal here is to calculate the disorder-avera
pressure per site,

P`
(quen)5

1

b
lim

N→`

1

N
^ lnZN~z!&z , ~3!

where the angular brackets with the subscriptz here and
henceforth denote averaging over all possible configurat
$z i%. We suppose thatz i are independent, randomly distrib
uted variables with distribution

r~z!5pd~z21!1~12p!d~z!. ~4!

Note that herep is the probability that a given segment
catalytic; hence, in the thermodynamic limitp determines the
mean number density of the catalytic segments.

Further on, we will consider the case when the disorde
placement of the catalytic segments can be viewed asan-
nealed. In this case, which requires a somewhat simpl
analysis, the disorder-averaged pressure per site is give
01611
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P`
(ann)5

1

b
lim

N→`

1

N
^ lnZN~z!&z, ~5!

i.e., contrary toP`
(quen) defined in Eq.~3!, in which case we

face the problem of averaging thelogarithm of the partition
function with the distribution in Eq.~4!, here we have to
perform averaging with the distributionr(z), Eq. ~4!, of the
partition function itself. Also in this case,p will have the
same meaning of the mean number density of the cata
segments.

We note also that the situation withannealeddisorder can
be realized in practice in case when the catalytic age
~modeled here as the segments with catalytic properties! dif-
fuse. On the other hand, an assumption of theannealeddis-
order is often used as a meaningful ‘‘mean-field’’ approxim
tion for systems with quenched disorder. Hence, it might
instructive to consider this case in order to check the beh
ior provided by such a mean-field approach against an e
solution in thequencheddisorder case.

OnceP` are obtained, all other pertinent thermodynam
properties can be readily evaluated by differentiatingP`

with respect to the chemical potentialm. In particular, the
disorder-averaged particles’ densityn will be given by

n`5
]

]m
P` , ~6!

while the compressibilitykT obeys

kT5
1

n`
2

]n`

]m
. ~7!

We set out to show that for bothannealedand quenched
disorder cases, whenz i are independent, two-state rando
variables all these functions can be evaluated explicitly, i
closed form. We will distinguish between these two cases
assigning, for notational convenience, the superscripts(ann)
and (quen).

To close this section, we display the results correspond
to two ‘‘regular’’ cases: namely, whenp50 andp51, which
will serve us in what follows as some benchmarks. In t
p50 case all sites are decoupled, and one has the tr
Langmuir adsorption results,

P`
(Lan)5

1

b
ln~11z!, n`

(Lan)5
z

11z
~8!

and

b21kT
(Lan)5

1

z
. ~9!

The ‘‘regular’’ case whenp51 is a bit less trivial, but the
solution can be still straightforwardly obtained. In this ca
we have
5-3
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G. OSHANIN AND S. F. BURLATSKY PHYSICAL REVIEW E67, 016115 ~2003!
P`
(reg)5

1

b
lnSA114z11

2 D , n`
(reg)512

2z

114z2A114z
,

~10!

and

b21kT
(reg)5

2z

A114z~112z2A114z!
. ~11!

Note that in thep51 case~the completely catalytic system!
the mean particle density tends to 1/2 asz→` ~compared to
n`

(Lan)→1 behavior observed for the Langmuir case!, which
means that the adsorbent undergoes ‘‘ordering’’ transit
and particles distribution on the lattice becomes period
revealing a spontaneous symmetry breaking between
sublattices. This happens, of course, due to the nea
neighbor exclusion constraint embodied in Eq.~1!. In the
limit z→` the compressibility vanishes askT

(reg)}1/Az com-
pared to the Langmuir behaviorkT

(Lan)}1/z.

III. ANNEALED DISORDER

We start our analysis of the random reaction/adsorp
model considering first the situation in which the disorder
placement of the catalytic segments can be viewed
annealed. In this case, the disorder-averaged pressure
site is defined by Eq.~5! and thus has a more simple for
than that in Eq.~3!, since we have to perform averaging n
of the logarithm of the partition function in Eq.~1! but of the
partition function itself.

Averaging of the partition function in Eq.~1! over the
distribution of the catalytic segments can be performed v
directly. Since allz i are independent, the disorder-averag
partition functionZN(z) attains a factorized form,

^ZN~z!&z5(
$ni %

zSN )
i 51

N21

^~12z inini 11!&z i
, ~12!

where each multiplier

^~12z inini 11!&z i
5E dzr~z!~12znini 11!5p~12nini 11!

1~12p!5~12pnini 11!. ~13!

Consequently, the disorder-averaged partition function in
~1! is given by

ZN5^ZN~z!&z5(
$ni %

zSN )
i 51

N21

~12pnini 11!. ~14!

Note now that since (12pnini 11)[exp@ln(12p)nini11#, ZN
defined in the last equation can be thought of as a parti
function of a one-dimensional lattice gas with neare
neighbor repulsive interaction with the amplitude ln@1/(1
2p)#. Note also that here the original constraint that no t
particle can be located simultaneously at the extremetie
the catalytic segments is replaced by a more tolerant co
tion that the particles may occupy neighboring sites a
01611
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where, but the penalty of 2 ln(12p) has to be paid. For any
finite p,1 this penalty can be overpassed by increasing
chemical potential and hence, for largez one may thus ex-
pect completely different behavior in the annealed a
quenched disorder cases. On the other hand, forp51 this
penalty gets infinitely large and cannot be compensated
the increase of the chemical potential; thusp51 is a special
point.

Now, to find an explicit form ofZN we proceed as fol-
lows. Let us first introduce an auxiliary, constrained partiti
function of the form

ZN8 5ZNunN515z(
$ni %

zSN21 )
i 51

N22

~12pnini 11!~12pnN21!,

~15!

whereSN215( i 51
N21ni and,ZN8 stands for the partition func

tion of a one-dimensional lattice gas with a nearest-neigh
repulsion and fixed occupation of the sitei 5N, nN51. Evi-
dently, we have that

ZN5ZN211ZN8 . ~16!

Next, considering two possible values of the occupation v
ablenN21, i.e., nN2150 andnN2151, we find thatZN8 can
be expressed throughZN22 andZN218 as

ZN8 5z(
$ni %

zSN22 )
i 51

N23

~12pnini 11!1z2~12p!

3(
$ni %

zSN22 )
i 51

N23

~12pnini 11!~12pnN22!

5zZN221z~12p!ZN218 , ~17!

whereSN225( i 51
N22ni Now, recursion in Eq.~16! allows us

to eliminate ZN8 in Eq. ~17!. From Eq. ~16! we haveZN8
5ZN2ZN21, and consequently, we find from Eq.~17! that
the unconstrained partition functionZN in Eq. ~14! obeys the
following recursion

ZN5@11z~12p!#ZN211zpZN22 , ~18!

which is to be solved subject to evident initial conditions

Z0[1 and Z1[11z. ~19!

Solution of the recursion in Eq.~18! can be readily obtained
by standard means, i.e., by evaluating the generating fu
tion for ZN , Zt5(N51

` ZNtN, and then by inverting it with
respect to the variablet, which yields

ZN5
~11zpt1!

zpt1~ t12t2!
t1

2N2
~11zpt2!

zpt2~ t12t2!
t2

2N , ~20!

where

t656
1

2zp
A@11z~12p!#214zp2

@11z~12p!#

2zp
.

~21!
5-4
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Noticing next thatt1<ut2u we find that in the annealed dis
order case in the thermodynamic limit the disorder aver
pressure per site is given by

P`
(ann)52

1

b
lnF 1

2zp
A@11z~12p!#214zp

2
@11z~12p!#

2zp G , ~22!

which is valid for anyz andp.
Consider now the asymptotic small-z and large-z behavior

of the pressureP`
(ann) , the mean densityn`

(ann) , and the
compressibilitykT

(ann) . ExpandingP`
(ann) in Eq. ~22! into the

Taylor series in powers of the activityz, we find that in the
small-z limit P`

(ann) follows:

bP`
(ann)5z2S 1

2
1pD z21S 1

3
12p1p2D z3

2S 1

4
13p1

9

2
p21p3D z41O~z5!. ~23!

Note thatP`
(ann) in Eq. ~23! reduces to

bP`
(Lan)5z2

1

2
z21

1

3
z32

1

4
z41O~z5!, ~24!

and

bP`
(reg)5z2

3

2
z21

10

3
z32

35

4
z41O~z5!, ~25!

for p50 andp51, respectively. From Eq.~23! we find that
in the annealed disorder case in the small-z limit the mean
particle density is given by

n`
(ann)5z2~112p!z21~116p13p2!z3

2~1112p118p214p3!z41O~z5!, ~26!

while the compressibility obeys

b21kT
(ann)5

1

z
1p~22p!z24pz213p~213p!z3

28p~114p12p2!z41O~z5!. ~27!

We consider next the asymptotic behavior ofP`
(ann) in the

large-z limit.1 We notice first that herep51 is actually a
special point; that is, asymptotic large-z behavior ofP`

(ann) is
completely different forp,1 andp51 ~completely catalytic
systems!. For p,1 and z@(12p)22, we have that the
asymptotic expansion ofP`

(ann) reads

1Note that physically this limit corresponds to the systems w
high vapor pressure, low temperature or systems having a
barrier against desorption of individualA particles~this barrier does
not affect, however, desorption of reactedAA pairs, which still
instantaneously desorb!.
01611
e bP`
(ann)5 ln~z!1 ln~12p!1

1

~12p!2z
2

~112p!

2~12p!4z2

1
~116p13p2!

3~12p!6z3
2

~1112p118p214p3!

4~12p!8z4

1OS 1

z5D , ~28!

while in the regular, completely catalytic casep51 it fol-
lows

bP`
(ann)5bP`

(reg)

5
1

2
ln~z!1

1

2z1/2
2

1

48z3/2
1

3

1280z5/2
1OS 1

z7/2D .

~29!

Consequences of such a difference can be seen in a dra
cally different behavior of the mean particle density. Forp
,1 andz@(12p)22 we find

n`
(ann)512

1

~12p!2z
1

~112p!

~12p!4z2
2

~116p13p2!

~12p!6z3

1
~1112p118p214p3!

~12p!8z4
1OS 1

z5D , ~30!

while in the regular casep51 the mean particle density i
given by

n`
(reg)5

1

2
2

1

4z1/2
1

1

32z3/2
2

3

512z5/2
1OS 1

z7/2D . ~31!

This signifies, in particular, that forp arbitrarily close but not
equal to unity, the mean density is equal to 1 asz5`, while
for p strictly equal to unity the mean densityn`

(ann)51/2.
The behavior ofn`

(ann) as a function ofz for different values
of p is depicted in Fig. 2.

In a similar fashion we find that asymptotic behavior
the compressibilitykT is very different forp,1 andp51.
For p,1 andz@(12p)22, kT

(ann) obeys

b21kT
(ann)5

1

~12p!2z
2

4p

~12p!4z2
1

3p~213p!

~12p!6z3

2
8p~114p12p2!

~12p!8z4
1OS 1

z5D , ~32!

while for p51 andz@1 it follows that

b21kT
(reg)5

1

2z1/2
1

1

2z
1

3

16z3/2
2

5

256z5/2
1OS 1

z7/2D .

~33!
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Finally, we realize that in theannealeddisorder case for
any fixedz the compressibilitykT

(ann) appears to be anon-
monotonicfunction ofp. To see this, it suffices to notice tha
first, kT

( lan)<kT
(reg) , i.e., for any fixedz the value of the com-

pressibility forp50 is always less than or equal to its valu
for p51. Second, one readily finds that in the vicinity ofp
51 the compressibilitykT

(ann) obeys

b21kT
(ann)5b21kT

(reg)1
4z2

~114z!3/2
~12p!1O@~12p!2#,

~34!

i.e., for anyz the valuekT
(reg) corresponding top51 is ap-

proached from above. Consequently, for any fixedz the com-
pressibility kT

(ann) is a nonmonotonic function of the mea
density p of the catalytic segments. Behavior of the com
pressibility kT

(ann) as a function ofp for several different
values ofz is presented in Fig. 3.

IV. QUENCHED DISORDER

We turn now to the more complex situation with
quenched disorder, in which case, in order to define
disorder-averaged pressure, we have to perform averagin

FIG. 2. The mean densityn of adsorbed particles versus th
chemical potentialbm for the annealed~curves tending to unity!
and quenched disorder case for different values of the mean de
p of the catalytic segments.
01611
-

e
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the logarithm of the partition function in Eq.~1!. Conse-
quently, here we aim to determine the recursions obeyed
ZN(z) and ^ lnZN(z)&z .

A. Recursion relations for ZN„z… and Š lnZN„z…‹z

We proceed here along essentially the same lines as in
preceding section. We introduce first a constrained partit
function of the form

ZN8 ~z!5ZN~z!unN51

5z(
$ni %

zSN21 )
i 51

N22

~12z inini 11!~12zN21nN21!,

~35!

ZN8 (z) now stands for the partition function of a system wi
fixed setz5$z i% and fixed occupation of the sitei 5N, nN
51. Similarly to Eq.~16!, we have thatZN(z) obeys

ZN~z!5ZN21~z!1ZN8 ~z!. ~36!

ity

FIG. 3. The compressibilityb21kT versus the mean densityp of
the catalytic segments for several values of the activityz, z
50.2,2 andz520. Upper, nonmonotonic curves show the behav
of b21kT in the annealeddisorder case, while the lower curve
correspond to the solution in thequencheddisorder case.
5-6
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Next, considering two possible values of the occupation v
ablenN21, i.e., nN2150 andnN2151, we find thatZN8 (z)
can be expressed throughZN22(z) andZN218 (z) as

ZN8 ~z!5zZN22~z!1z~12zN21!ZN218 ~z!, ~37!

which parallels the result in Eq.~17!. Eliminating ZN8 (z) in
Eq. ~37!, we find eventually that the unconstrained partiti
function ZN(z) in Eq. ~1! obeys the following recursion:

ZN~z!5@11z~12zN21!#ZN21~z!1zzN21ZN22~z!,
~38!

which is to be solved subject to the initial conditions in E
~19!.

A conventional way~see, e.g., Ref.@30,31#! to study lin-
ear random three-term recursions is to reduce them to
dom maps by introducing the Ricatti variable of the form

RN~z!5
ZN~z!

ZN21~z!
. ~39!

In terms of this variable Eq.~38! becomes

RN~z!5@11z~12zN21!#1
zzN21

RN21~z!
rm
o
rs

th

sin
ag

01611
i-

.

n-

with

R1~z![R1511z, ~40!

which represents a random homographic relation. O
RN(z) is defined for arbitraryN, the partition functionZN(z)
can be readily determined as the product,

ZN~z!5)
i 51

N

Ri~z!, ~41!

and hence, the desired disorder-averaged logarithm of
partition function will be obtained as

^ ln ZN~z!&z5(
i 51

N

^ ln Ri~z!&z . ~42!

Before we proceed further on, some comments on
recursion in Eq.~40! are in order. We recall first that, b
definition, each quenched random variablez i assumes only
two values—1~with probability p) and 0 ~with probability
12p). Hence, we may formally rewrite the random hom
graphic relation in Eq.~40! as
Ri~z!5H 11z/Ri 21~z!, z i 2151 ~with probability p!

11z5R1 , z i 2150 ~with probability 12p!.
e

m of
e
f

Note now that recursion schemes of quite a similar fo
have been discussed already in the literature in different c
texts. In particular, two decades ago Derrida and Hilho
@20# ~see also Ref.@33# for a more general discussion! have
shown that such recursions occur in the analysis of
Lyapunov exponentF(e) of the product of random 232
matrices of the form

F~e!5 lim
N→`

1

N K lnH TrF)
i 51

N S 1 e

zie zi
D G J L

$zi %

, ~43!

wherezi are independent positive random variables with
given probability distributionr(z). Equation~43! is related,
for instance, to the disorder-averaged free energy of an I
chain with nearest-neighbor interactions in a random m
netic field, described by the Hamiltonian

H852J8s1sN2J8 (
i 51

N21

s is i 112(
i 51

N

hi8s i , ~44!
n-
t

e

a

g
-

in which one setsJ85 ln(1/Ae) and hi85 ln(1/Azi). As no-
ticed in Ref.@20#, the product in Eq.~43! also appears in the
solution of a two-dimensional Ising model with row-wis
random vertical interactions@34#, the role ofe being played
by the wave numberu. The recurence scheme in Eq.~43!
emerges also in such an interesting context as the proble
enumeration of primitive words with random errors in th
locally free and braid groups@32#. Some other examples o
physical systems in which the recursion in Eq.~43! appears
can be found in Ref.@30#.

Further on, Derrida and Hilhorst@20# have demonstrated
that F(e) can be expressed as

F~e!5 lim
N→`

1

N (
i 51

N

^ lnRi8&$zi %
, ~45!

whereRi8 are defined through the recursion

Ri8511zi 211zi 21~e221!/Ri 218 with R1851.
~46!
5-7



a

w

s-

t:

-

t
r

o
ss

n-

q.

-
ent
co-
del
as

of
e

t

be

ere.

out
rob-
a
ul

the
to

t,

G. OSHANIN AND S. F. BURLATSKY PHYSICAL REVIEW E67, 016115 ~2003!
Moreover, they have shown that the model admits an ex
solution when

r~z!5~12p!d~z!1pd~z2y!, ~47!

i.e., when similarly to the model under study,zi are indepen-
dent, random two-state variables assuming only t
values—y with probability p and 0 with probability 12p.
Supposing that wheni increases, a stationary probability di
tribution P(R8) of the Ri8 independent ofi exists@35#, Der-
rida and Hilhorst@20# have found the following exact resul

F~e!5p ln~11b!2p~22p!lnS 11b
y2b

12byD
1~12p!2 (

N51

`

pNlnF11bS y2b

12byD
N11G , ~48!

where

b511
~12y!2

2e2y
F12S 114

e2y

~12y!2D 1/2G . ~49!

We note parenthetically that Eq.~48! shows a striking behav
ior in the e→0 limit. In this case, Derrida and Hilhorst@20#
have demonstrated that for

py.1, and p,1, ~50!

which implies that*r(z)ln(z),0, the Lyapunov exponen
F(e) defined by Eq.~48! exhibits an anomalous, singula
behavior of the form

F~e!;ea, where a52 ln~p!/ ln~y!. ~51!

We turn now back to our recursion scheme in Eq.~40! and
notice that setting

Ri~z!5~11z!Ri8 , ~52!

and choosing

y52
z

11z
52n`

(Lan) and e25
z

11z
5n`

(Lan) ,

~53!

makes the recursion schemes in Eqs.~40! and ~46! identical
Consequently, the disorder-averaged pressure per site in
random catalytic reaction/adsorption model can be expre
as

P`
(quen)[

1

b
ln~11z!1

1

b
F~e!, ~54!

whereF(e) is the Lyapunov exponent of the product of ra
dom 232 matrices in Eq.~43!, in whiche andzi are defined
by Eqs.~47! and ~53!.
01611
ct

o

ur
ed

Note next that the first term on the right-hand side of E
~54! is a trivial Langmuir result for thep50 case
~adsorption/desorption without reaction! which would entail
n`

(quen)5z/(11z). Hence, all nontrivial, random reaction
induced behavior is embodied in the Lyapunov expon
F(e). We hasten to remark, however, that despite some
incidence of results, the random reaction/adsorption mo
under study has completely different underlying physics,
compared to the model studied by Derrida and Hilhorst@20#.
Thus, one would not expect any singular overall behavior
pressure in thee→0 limit ~which corresponds here to th
limit of vanishingly small activitiesz ~or m→2`), and thus
pertains ton!1). In consequence, herey is also dependen
on z and y→0 in the same manner ase. Moreover, in our
casey,0, which invalidates the condition in Eq.~50!.

B. Disorder-averaged pressure

Hence, the disorder-averaged pressure per site can
readily obtained from Eqs.~48! and ~49! by defining the
parametersy ande as prescribed in Eq.~53!. This yields the
following explicit representation:

bP`
(quen)5 ln~fz!2~12p!ln~12v2!1

~12p!2

p

3 (
N51

`

pNln@12~21!NvN12#, ~55!

where

fz5
11A114z

2
~56!

and

v5
A114z21

A114z11
5z/fz

2512
1

fz
. ~57!

Note thatfz obeysfz(fz21)5z and thus forz51 thef1

is just the ‘‘golden mean,’’f15(A511)/2. Below we will
show why and how this mathematical constant appears h

On the other hand, the derivation of the result in Eq.~55!
can be performed in a very straightforward manner with
resorting to the assumption on existence of a stationary p
ability distribution P(R8). The intermediate steps of such
derivation contain useful formulas, which might be helpf
for the understanding of the asymptotic behavior of Eq.~55!.
Since it allows us to answer also the question of how
thermodynamic limit is achieved, we find it expedient
present such a derivation here.

We start with calculation of an explicit form of^ ln Ri(z)&z .
To do it, it suffices to notice the following two points. Firs
we notice that

Ri~z!5Ri~z i 21 ,z i 22 ,z i 23 , . . . ,z1! ~58!
5-8
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and

Ri 21~z!5Ri~z i 22 ,z i 23 ,z i 24 , . . . ,z1!, ~59!

i.e., Ri 2k(z) depends only onz i 2k2n with n51,2, . . . ,i
2k21 and is independent ofz i 2k . Second, with probability
12p the Ricatti variable is set equal to 11z, i.e., to its
initial value R1, which is a nonrandom function. These tw
observations allow us to work out an explicit formula f
^ ln(Ri(z))&z which is valid for anyi.

Taking the logarithm of both sides of Eq.~40! and aver-
n-

o

01611
aging it with respect to the distribution of random variabl
z i , we have

^ ln@Ri~z!#&z5 K lnS 11z~12z i 21!1z
z i 21

Ri 21 ~z! D L
z

.

~60!

We notice next that sinceRi 21(z) is independent ofz i 21, we
can straightforwardly average the right-hand side of Eq.~60!
with respect toz i 21, i.e.,
^ lnRi~z!&z5 K lnS 11z~12z i 21!1z
z i 21

Ri 21 ~z! D L
z

5~12p!ln~11z!1pK lnS 11
z

Ri 21~z! D L
z

5~12p!ln~11z!1pK lnS 11
z

11z~12z i 22!1z
z i 22

Ri 22~z!
D L

z

. ~61!

Now, sinceRi 22(z) is independent ofz i 22, we can again perform averaging over states of this variable, which yields

^ lnRi~z!&z5~12p!ln~11z!1pK lnS 11
z

11z~12z i 22!1z
z i 22

Ri 22~z!
D L

z

5~12p!ln~11z!1p~12p!lnS 11
z

11zD1p2K lnS 11
z

11
z

Ri 22~z!
D L

z

5~12p!ln~11z!1p~12p!lnS 11
z

11zD1p2K lnS 11
z

11
z

11z~12z i 23!1z
z i 23

Ri 23~z!

D L
z

. ~62!
erat-

lks
Noticing again thatRi 23(z) is independent ofz i 23 and so
forth, we arrive eventually at the following explicit represe
tation for ^ lnRi(z)&z :

^ lnRi~z!&z5~12p! (
n51

i 21

pn21Fn1pi 21Fi , ~63!

where the sum on the right-hand side~rhs! of Eq. ~63! is
defined fori>2 and equals zero otherwise, whileFn denote
natural logarithms of the Stieltjes-type continued fractions
the form

F15 ln~11z!, F25 lnS 11
z

11zD ,

F35 lnS 11
z

11
z

11z
D ,
f

•••

Fi5 lnS 11
z

11
z

11
z

11
•••

11z

D . ~64!

To analyze the leading large-N behavior of the disorder-
averaged pressure per site we resort to the standard gen
ing function technique@36#, often used, in particular, in the
analysis of peculiar properties of different random wa
@37#. Let us define first an auxiliary generating function

Rt5 (
n51

`

tn^ lnRn~z!&z . ~65!
5-9
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Then, multiplying both sides of Eq.~63! by tn and perform-
ing the summation, we readily find that

Rt[
12pt

p~12t ! (
n51

`

tnpnFn . ~66!

Consequently, the generating function of the averaged lo
rithm of the partition functionZN(z) obeys

Zt5 (
N51

`

tN^ lnZN~z!&z5 (
N51

`

tN(
n51

N

^ lnRn~z!&z5
1

12t
Rt

5
12pt

p~12t !2 (
n51

`

tnpnFn , ~67!

and hence, the generating function of an average pressur
site, defined as

Pt5
1

b (
N51

`
tN

N
^ ln ZN~z!&z , ~68!

attains the form

Pt5
1

bp (
N51

`

pNFN~ I N2pIN11!, ~69!

where

I N5E
0

t

dt
tN21

~12t!2
. ~70!

Now, in the large-N limit, the asymptotic behavior of the
disorder-averaged pressurePN per site in a finite chain of
lengthN can be obtained very directly from the expansion
Pt in the vicinity of the closest to the origin singular poi
@36#, i.e., t51. Since, in the limitt→12, I N obeys

I N5
1

12t
1~N21!ln~12t !1O~1!, ~71!

we have that in this limitPt is given by

Pt5
1

12t
P`

(quen)1 ln~12t !S p
]

]p
P`

(quen)D1O~1!,

~72!

where

P`
(quen)5

~12p!

bp (
n51

`

pnFn . ~73!

Consequently, we find that in the large-N limit PN
(quen) fol-

lows

PN
(quen)5P`

(quen)2
1

N S p
]

]p
P`

(quen)D1OS 1

N2D , ~74!
01611
a-

per

f

in which equationP`
(quen) defined by Eq.~73! is the desired

thermodynamic limit result for the disorder-averaged pr
sure per site in the quenched disorder case. Note tha
virtue of the expansion in Eq.~74!, the corrections to the
thermodynamic limit are proportional to the first inver
power of the chain lengthN. Note also that since

lim
n→`

Fn5 ln~fz!5 lnS 11A114z

2 D , ~75!

i.e., Fn is the nth approximant of ln(fz), P`
(quen) can be

thought of as the generating function of such approxima
One expects then that forz,1 the sequence of approximan
converges quickly to ln(fz); expanding thenth approximant
Fn into the Taylor series in powers ofz, one has that the firs
n terms of such an expansion coincide with the firstn terms
of the expansion of ln(fz). Consequently,Fn andFn21 differ
only by terms of orderzn, which signifies that convergenc
is good. On the other hand, forz>1 convergence become
poor and one has to seek for a more suitable representa
As a matter of fact, already forz51 one has that in the limit
n→` the approximantFn tends to ln(f1), i.e., the logarithm
of the ‘‘golden mean,’’ which is known as the irrational num
ber worst approximated by rationals. Moreover, forz→` the
convergence is irregular in the sense that only the appr
mants with odd numbers show the same large-z behavior as
ln(fz); the approximants with evenn all tend asz→` to
finite values ln(n/211) ~see, Fig. 4!.

We turn now back to the result in Eq.~73! aiming to find
a convenient representation more amenable to further an
sis. To do this, let us note thatFn in Eq. ~64! can be ex-
pressed as the logarithm of the convergents of the Stilt
type continued fractions,

Fn5 lnS Kn~z!

Kn21~z! D , ~76!

where Kn(z) are polynomials of the activityz defined
through the three-term recursion,2

Kn~z!5Kn21~z!1zKn22~z!, K0~z![1, K1~z![11z.
~77!

These polynomials can be, of course, obtained very dire
by introducing their generating function, but we can avo
doing it by merely noticing that they are simply related,
view of the form of the recursion in Eq.~77!, to the so-called
golden or Fibonacci polynomialsFn12(x) @38#, which are
defined by the three-term recursion of the form

Fn11~x!5xFn~x!1Fn21~x!, F1~x![1, F2~x![x.
~78!

On comparing the recursions in Eqs.~77! and ~78!, one in-
fers that

2It is straightforward to check that the polynomialKn(z) is just
the partition function in Eq.~1! for a chain of lengthn in the
completely catalyticp51 system, i.e.,Kn(z)5Zn(z[1).
5-10
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Kn~z!5z(n11)/2Fn12~1/Az!. ~79!

Hence, the approximantFn can be expressed as

Fn5
1

2
ln~z!1 lnS Fn12~1/Az!

Fn11~1/Az!
D . ~80!

Note that even at this stage one may understand where
such functions asfz appear in the expression for th
disorder-averaged pressure in Eq.~55! ~first term on the rhs!.
The point is that, similarly to the Fibonacci numbersFn

[Fn(1), which obey limn→`Fn /Fn215f15(A511)/2,
the ratio of two consecutive golden polynomialsFn(1/Az)
and Fn21(1/Az) also converges asn→` to a finite limit
given by the functionfz /Az. One expects hence that the re
of terms on the rhs of Eq.~55! stem from the finite-n effects
and describe the relaxation of the logarithm
Fn(1/Az)/Fn21(1/Az) to ln(fz) .

To determine the relaxation terms, one uses the stan
definition for the Fibonacci polynomials,

Fn~x!5
1

A41x2 F S x1A41x2

2 D n

2~21!nS 2

x1A41x2D nG .

~81!

FIG. 4. Plot of the approximantsFn , n51, 2, 3, 4, 5, and 6,
and ln(fz) versus activityz.
01611
m
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In virtue of this formula, one finds that the ratio of tw
consecutive golden polynomials obeys

Fn12~1/Az!

Fn11~1/Az!
5

fz

Az
S @12~21!nvn12#

@11~21!nvn11#
D , ~82!

wherev has been defined in Eq.~57!. Consequently, we find
that thenth approximantFn is given by

Fn5 ln~fz!1 lnS @12~21!nvn12#

@11~21!nvn11#
D , ~83!

where, as we have already remarked, the first term on the
of Eq. ~83! corresponds to the limiting form of the approx
mants, while the second term determines the relaxation
this limiting form. More specifically, to the leading order th
relaxation is described by an exponential functi
exp@2nln(1/v)#. Consequently, one expects a fast conv
gence in case whenz is small (v is small! and poor conver-
gence whenz→` (v→1). Substituting Eq.~83! into Eq.
~73! we recover, upon some straightforward algebra, the
sult in Eq.~55!.

C. Asymptotic behavior of the disorder-averaged pressure,
mean density and the compressibility

Consider first the small-z behavior of the disorder-
averaged pressure per site, defined by Eq.~55!. As we have
already remarked, expanding thenth approximantFn into
the Taylor series in powers ofz, one has that the firstn terms
of such an expansion coincide with the firstn terms of the
expansion

ln~fz!5 lnS 11A114z

2 D
52

1

2Ap
(
n51

`
~21!nG~n11/2!

G~n11!

~4z!n

n
, ~84!

which implies thatFn andFn21 differ only by terms of order
zn and allows to obtain very directly a convergent smalz
expansion of the pressureP`

(quen) . We find then

bP`
(quen)5z2S 1

2
1pD z21S 1

3
12p1p2D z3

2S 1

4
1

7

2
p14p21p3D z41O~z5!. ~85!

Consequently, in the small-z limit the mean density obeys

n`
(quen)5z2~112p!z21~116p13p2!z3

2~1114p116p214p2!z41O~z5!, ~86!

while the compressibilitykT
(quen) follows
5-11



-

s

s

or

e

se

ni

of

ls

G. OSHANIN AND S. F. BURLATSKY PHYSICAL REVIEW E67, 016115 ~2003!
b21kT
(quen)5

1

z
1p~22p!z24p~22p!z2

13p~82p22p2!z31O~z4!. ~87!

Note now that the expressions in Eqs.~85! to ~87! differ from
their counterparts obtained in theannealeddisorder case,
Eqs. ~23!, ~26!, and ~27!, only starting from the terms pro
portional to the fourth power of the activityz. On the other
hand, the coefficients in the small-z expansion nonetheles
coincide with the coefficients in the expansions ofP`

(Lan) and
P`

(reg) when we setp50 or p51 in Eq. ~85!.
Now, we turn to the analysis of the large-z behavior

which is a bit more complex than thez!1 case and require
understanding of the asymptotic behavior of the sum

S5 (
N51

`

pNln@12~21!NvN12# ~88!

entering Eq.~73!. We note first that in this sum the behavi
of the terms with odd and evenN is quite different and we
have to consider it separately.

Let

Sodd5
1

p (
N51

`

p2Nln~11v2N11! ~89!

denote the contribution of the terms with oddN. Note that
when z→` ~i.e., v→1) the sumSodd tends top ln(2)/(1
2p2). The corrections to this limiting behavior can be d
fined as follows. Expanding the logarithm ln@11v2N11# into
the Taylor series in powers ofv and then using the definition
v5121/fz and the binomial expansion, we construct a
ries in the inverse powers offz . This yields

Sodd5
p

12p2
ln~2!2

1

2

p~32p2!

~12p2!2

1

fz
1

1

8

p~316p22p4!

~12p2!3

3
1

fz
2

1
1

24

p~15110p22p4!

~12p2!3

1

fz
3

1OS 1

fz
4D . ~90!

Note that this expansion is only meaningful whenfz@(1
2p)21 @z@(12p)22)], which signifies thatp51 is also a
special point for the quenched disorder case.

Further on, plugging into the latter expansion the defi
tion of fz , fz5(11A114z)/2, we obtain the following
expansion in the inverse powers of the activityz:

Sodd5
p

12p2
ln~2!2

p

2

~32p2!

~12p2!2

1

z1/2
1

p

8

~922p21p4!

~12p2!3

1

z

1
p

48

~324p21p4!

~12p2!3

1

z3/2
1OS 1

z2D . ~91!

Consider next the sum

Seven5 (
N51

`

p2Nln~12v2N12!, ~92!
01611
-

-

-

which represents the contribution of terms with evenN. Note
that in contrast to the behavior ofSodd , the sum in Eq.~92!
diverges whenz→` (v→1). Since 12v2N12;12v for
v→1, we have that in this limit

Seven;
p2

12p2
ln~12v!. ~93!

To obtain several correction terms we make use of one
Gessel’s expansions@39#,

lnS 2~N11!x

12~12x!2N12D 5 (
k51

`

gk~2N12!
~21!kxk

k
, ~94!

wheregk(2N12) are the Dedekind-type sums of the form

gk~2N12!5 (
z2N1251,zÞ1

1

~z21!k
, ~95!

where the summation extends over allz being the (2N12)th
roots of unity~with z51 excluded!. As shown in Ref.@39#,
the weightsgk(2N12) are polynomials inN of degree at
most k with rational coefficients; first few values ofgk(2N
12) are

g1~2N12!52~2N11!/2,

g2~2N12!52~2N11!~2N23!/12,

g3~2N12!5~2N11!~2N21!/8,

g4~2N12!5~2N11!~8N3128N22186N145!/720.
~96!

Now, settingx51/fz in the expansion in Eq.~94!, plugging
it to Eq. ~92!, and performing summations overN, we find
that Seven can be written as

Seven52
p2

12p2
ln~fz!1

p2

12p2
ln~2!1sp

2 (
k51

`

Gk~p!
~21!k

kfz
k

, ~97!

wheresp is an infinite series of the form3

sp5 (
N51

`

p2Nln~N11!, ~99!

while Gk(p) are the generating functions of the polynomia
gk(2N12),

3Note that sp shows a nonanalytic behavior whenp→1. This
function can be represented as

sp52
1

12p2
ln~12p2!2

p2

12p2 (n52

`
~21!n

n
F~p2,n,1!, ~98!

whereF(p2,n,1) are the Lerch transcedents,F(p2,n,1)5( l 50
` (1

1 l )2np2l . It is straightforward to find then thatsp521/
(12p2)ln(12p2)2g/(12p2)1O@(p)#, where g is the Euler
constant.
5-12



-

t
rd

nd

yt
ra
a

-

i

he
e

act
iate
on
ore

tact

ha-
lar
ey

the
e
ent

ytic

-
er-
case
licit
an
ate

he
y di-
fin-
nov

it
tion

er-
ure

nd
it
for
ted
der
f the

er

ADSORPTION OF REACTIVE PARTICLES ON A . . . PHYSICAL REVIEW E67, 016115 ~2003!
Gk~p!5 (
N51

`

gk~2N12!p2N. ~100!

Inserting next the definition offz , we find the following
explicit asymptotic expansion:

Seven52
1

2

p2

12p2
ln~z!1

p2

12p2
ln~2!1sp

2
p2~22p2!

~12p2!2

1

z1/2
1

p2~21218p215p4!

24~12p2!3

1

z

1
p2~22p2!

24~12p2!2

1

z3/2
1OS 1

z2D . ~101!

Finally, combining the expansions in Eqs.~73!, ~91!, and
~101!, we find the desired large-z expansion for the disorder
averaged pressureP`

(quen) ,

bP`
(quen)5

1

11p
ln~z!2

~12p!2

~11p!
ln~2!1

~12p!2

p
sp

1
1

6

613p2p3

~11p!2~12p2!

1

z
1OS 1

z2D . ~102!

Note thatP`
(quen) in Eq. ~102! shows a completely differen

behavior compared to its counterpart in the annealed diso
case already in the leading term in the large-z expansion.
Note also that herep51 appears to be a special point a
thus the expansion in Eq.~102! becomes meaningless forp
51. As a matter of fact, forp arbitrarily close to, but less
than, unity one has intervals that are devoid of the catal
segments. Contribution of such intervals to the ove
disorder-averaged pressure is of a Langmuir type and v
ishes only whenp is strictly equal to unity, which implies
that also herep51 is a special point.

We find next that forz@(12p)22 the mean particle den
sity obeys

n`
(quen)5

1

11p
2

1

6

613p2p3

~11p!2~12p2!

1

z
1OS 1

z2D ,

~103!

i.e., contrary to the behavior of the mean particle density
the annealed disorder case, Eq.~30!, n`

(quen) tends towards a
constant value 1/(11p), which depends onp and coincides
with the corresponding valuesn( lan)51 andn(reg)51/2 for
p50 and p51. Behavior of the mean density versus t
chemical potentialm for the annealed and quenched disord
01611
er

ic
ll
n-

n

r

cases is presented in Fig. 2.
Finally, from Eq. ~103! we find that the compressibility

kT
(quen) admits the following form:

b21kT
(quen)5

1

6

613p2p3

~11p!~12p2!

1

z
1

1

36

p~613p2p3!2

~11p!2~12p2!2

1

z2

1OS 1

z3D , ~104!

which also holds in the asymptotic limitz@(12p)22.

V. CONCLUSIONS

To conclude, in this paper we have presented an ex
solution of a random reaction/adsorption model, appropr
to the situations with the catalytically activated reactions
polymer chains containing randomly placed catalysts. M
specifically, we have considered here theA1A→0 reaction
on a one-dimensional regular lattice that is brought in con
with a reservoir ofA particles. TheA particles adsorb on and
desorb from the lattice according to the Langmuir mec
nism. Some portions of the intersite intervals on the regu
lattice possess special ‘‘catalytic’’ properties such that th
induce an immediate reactionA1A→0, as soon as twoA
particles land onto two vacant sites at the extremities of
catalytic segment, or anA particle lands onto a vacant sit
while the site at the other extremity of the catalytic segm
is already occupied by anotherA particle. For two different
cases; namely, when disorder in placement of the catal
segments can be viewed asannealed,and a more complex
situation with aquenchedrandom distribution of the cata
lytic segments, we have determined exactly the disord
averaged pressure per site. For the annealed disorder
such a pressure has been found in a closed form and exp
asymptotic expansions in powers of the activity for the me
particle density and for the compressibility of the adsorb
have been obtained. In the case ofquencheddisorder we
have shown that the thermodynamic limit result for t
disorder-averaged pressure per site can be obtained ver
rectly by noticing a similarity between the expressions de
ing the pressure in the model under study and the Lyapu
exponent of a product of random 232 matrices, obtained by
Derrida and Hilhorst@20#. We have also derived an explic
expression obeyed by the averaged logarithm of the parti
function, which is valid for any chain lengthN. From this
expression we have constructed the large-N expansion and
have shown, in particular, that the first correction to the th
modynamic limit result for the disorder-averaged press
per site is proportional to the first negative power ofN. The
leading term in this expansion coincides with the one fou
from the analysis by Derrida and Hilhorst. Explic
asymptotic expansions for the mean particle density and
the compressibility were also derived. We have demonstra
that for low activities in the annealed and quenched disor
cases the coefficients in the corresponding expansions o
pertinent parameters in the Taylor series in powers ofz co-
incide up to the orderz3 and start to deviate from each oth
5-13
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in the fourth order. On the other hand, expansions in inve
powers ofz ~large-z behavior! are different already in the
leading order. Most spectacular differences between the
nealed and quenched disorder cases have been observ
a-

.

r,

-J

s
e,

n,

.

iz

n-

01611
e

n-
d in

the behavior of the compressibility: in the annealed disor
case it appears to be a nonmonotonic function of the m
densityp of the catalytic segments, while in the quench
disorder case it is a monotonically increasing function ofp.
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